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A B S T R A C T 

 
Countries are making an effort to reach environmental goals to fight climate change. Buildings play a big part in the countries’ 

energy consumption, thus steps are being taken to reduce it through energy efficiency measures. To do so, it is important to 

understand the energy demand in buildings and its influencing parameters, having become the focus of many research 

studies. Universities can and should lead this pursuit of sustainability. However, having access to complex data regarding 

energy consumption is frequently a challenge. 

The purpose of this work is to develop a model to forecast end-uses energy demand in university buildings, using data 

commonly available in universities, such as a total electricity load and equipment’s and activity periods data, and try to find 

a relation between energy consumption and the type of activities of the building.  

Two buildings in the Alameda campus of IST served as case study: the Civil Building for model validation, and South Tower to 

test the extend of the model performance.  

Results show better performance for the Civil building than the South Tower, with an error of 12.57% and 22.36%, 

respectively. However, they show potential to be improved. The relation between energy consumption and types of areas in 

the building, seems to be greatly influenced by the existence of technical rooms, and other spaces such as offices and labs. 

The building’s electricity intensity for university buildings is found to range from 64.9 to 131.7 kWh/m2. HVAC is the most 

consuming end-use (24.62-70.53 kWh/m2), followed by lighting (16.97-30.53 kWh/m2) and electronics (15.26-20.24 kWh/m2). 

Other equipment like pumps, elevators and lab equipment have a low significance (8.05-9.96 kWh/m2). 
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1. Introduction  

Buildings account, on average, for 40% of the energy use in 
Europe and one third of the CO2 emissions [1,2]. It is 
believed that more than 50% of the energy consumption 
could be reduced by implementing measures to improve 
energy efficiency [3]. Studies show that implementing 
feedback systems of the energy consumption in residential 
buildings lead to energy reduction since the occupants 
have the incentive to reduce their bills [4,5]. However, 
these incentives do not exist for most service buildings 
occupants leading to poor equipment usage, such as 
leaving the lights or electrical equipment on after being 
used. During the period from 2000 to 2018 the energy 
consumption in the residential sector has decreased by 
4.5%, while in the services sector the energy consumption 
has increased by 20.2%. In 2018 service buildings 
accounted for 34.5% of the energy demand in buildings and 
this value is expected to increase [6]. Therefore, it is 

important to implement energy saving strategies for 
service buildings. 

Many universities have committed to reduce the energy 
consumption in their campi [7]. Knowing the energy 
demand of each building is important to analyse the 
current situation and find more efficient energy systems. 

Modelling energy demand has, therefore, become of 
crucial importance. Many studies have tried to find 
parameters that could influence energy consumption, like 
climatic factors, occupancy or construction solutions 
(insulation, architecture). 

F. Amara et al [8] found that temperature is one of the 

more important factors that influence consumption. R. 

Mena et al [9] studied the energy consumption on a solar 

energy research centre and found that temperature and 

solar radiation were both influencing factors. 

J. C. Wang [10] conducted a study on energy indicators for 
education buildings of different education levels in Taiwan. 
It was found that the higher the education level, the higher 
the indicators were. There was also a clear relation 



between the consumption and the temperature, since the 
months of higher temperature had higher energy 
consumption. 

However, for most buildings this is still a difficult process 
due to the lack of public access to monitoring or detailed 
information regarding either its occupancy and their 
behaviour, as well as specific information about the energy 
systems installed in the buildings or their constructive 
solutions. Thus, it is of high importance to understand 
better and forecast how energy is used, especially on 
services buildings where occupants do not have financial 
incentives to reduce consumption as they do in their 
residences. 

This study aims to address this problem by developing a 
top-down modelling framework to assess buildings’ end-
uses electricity demand by analysing the hourly load of 
total electricity demand, equipment use by type of space 
and activity period, developing an optimization model to 
estimate the main end-uses (lighting, HVAC, electronics, 
and Others). This information will allow institutions to 
analyse their campi buildings in more detail, comparing 
and benchmarking with other high education institutions, 
by an electricity intensity index by type of end-use, being 
able to address possible causes of inefficiency on electricity 
demand, and readjust if needed, without harming or 
influencing end-user’s comfort. By convenience of 
accessing data and for model validation purposes, this 
study used IST as a case study.  

This study is organized as follows. Section 2 reviews studies 
regarding optimization algorithms and analysis of energy 
indicators; Section 3 details the methodology regarding the 
correlation between different influencing parameters of 
electricity demand in buildings, followed by how the model 
was developed; Section 4 describes the case study and the 
data used; Section 5 shows the results for the model 
validation with the case study, as well as for the 
implementation for another building; Section 6 presents 
the conclusions. 

2. Literature Review 

There are many different models that try to predict energy 
consumption, and they are grouped into different 
methods. There are classic methods such as stochastic time 
series models, which include ARIMA, ARMA and 
autoregressive models, and regression models, like linear 
regression (LR) and multiple linear regression (MLR). These 
models provide good results for linear systems, and when 
there is a large amount of data to analyse. However, they 
struggle for non-linear systems [11]. 

S. Asadi et al [12] developed a MLR model to understand 
the relation between consumption and 17 building 
characteristics for different building shapes. This allowed 
for a clear observation of the influence of each one of those 
parameters in the electricity demand. 

These models are simple and easy to implement, however 
they still present issues for nonlinear systems. With the 
development of computers, artificial intelligence (AI) 
methods, such as artificial neural networks (ANN), support 

vector regression (SVR) and genetic algorithms (GA) have 
been the focus of many studies, since they can tackle this 
issue. 

J. Massana et al [13] studied the influence of taking into 
account different parameters for three different models, a 
MLR, an ANN and a SVR. Generally, the ANN and the SVR 
provided significantly better results than the MLR, however 
they also have much larger computation times. Reducing 
the parameters used to only outdoor temperature and 
occupancy attributes improved the computation time 
significantly, while also producing results with low errors. 

Genetic algorithm (GA) is an heuristic model inspired by 
Darwin’s theory of evolution. It generates many different 
solutions and the best ones survive to the next generation, 
so that the optimal solution, or at least a good solution, can 
be obtained. It is one of the most used models for 
optimization problems, especially for nonlinear 
optimization. The model generates many different 
solutions, that are independent of one another, so many 
different possibilities can be evaluated, with each 
parameter in analysis having a wide range of possible 
exploration from the solutions. However, like the other AI 
methods, it has a higher computation time than stochastic 
methods. It is also important to select the appropriate 
parameters, specifically, the fitness function, the crossover 
and mutation rates and the selection criteria [14]. 

H. B. Gunay et al [15] used a genetic algorithm to help 
disaggregate the total loads of an academic office building 
into three different end-uses, lighting and plug loads, 
AHUs, and chillers. The GA was used to determine the 
parameters that related each end-use load with 
information from equipment like fans and pumps, for 
example, when they are on or off, the air pressure or the 
temperature. They applied different constraints to the 
usage of each end-use, such as, the electricity used by 
chillers should increase with temperature, or the electricity 
demand from pumps is higher when the air pressure 
increases. 

F. Rosso et al [16] conducted a study on different possible 
retrofit measures and their impacts on energy 
consumption as well as cost of implementing those 
measures, where a genetic algorithm was used to 
determine the best options from different perspectives. 
The initial investment of the measures, the energy cost, the 
energy demand and the CO2 emissions were evaluated for 
each possible combination of measures, so that the 
building’s stakeholder could choose the best solution 
taking into account their own priorities. 

Energy indicators are a good way to analyse the 
consumption in a building, and there are some studies that 
focus on this. As mentioned in the previous section J. C. 
Wang. [10] determined the energy indicators of different 
educational buildings in Taiwan, and collected information 
through other research papers about these indicators for 
different educational buildings from various countries. 

B. Howard et al [17] estimated the energy indicators in 
Manhattan for different types of buildings, such as offices, 
residential, schools and others. 



3. Methodology 

A genetic algorithm (GA) was developed to forecast 
electricity demand in university buildings and disaggregate 
it into end-uses. First, data including total energy 
consumption, end-use shares, hourly load profiles, data 
equipment and outside temperature were collected and 
processed. Afterwards, this data was analysed to 
determine any relation between consumption data and 
possible influencing parameters. To improve the analysis, 
the data was separated into different regimes. The 
patterns of consumption vary throughout the year, so by 
separating the data into different regimes according to the 
activity should improve the analysis. Table 1 shows the 
different regimes. The HVAC data was also divided into 
heating and cooling seasons. 

3.1 Correlation of electricity demand influencing 
parameters 

The relation between HVAC consumption and outside 
temperature was studied. The correlation between the 
average HVAC consumption during the day (08:00-19:00) 
and the average temperature (T) was determined using the 
corrcoef function in Matlab. This was done for every regime 
as shown in equation 1. 

𝐶𝑜𝑟𝑟𝑐𝑜𝑒𝑓(𝐻𝑉𝐴𝐶𝑅,𝑆𝑒𝑎𝑠𝑜𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑇𝑅,𝑆𝑒𝑎𝑠𝑜𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑅,𝑆𝑒𝑎𝑠𝑜𝑛 , (1) 

, 𝑅 = {1,2, … ,8}, 𝑆𝑒𝑎𝑠𝑜𝑛 = {𝐻𝑒𝑎𝑡𝑖𝑛𝑔, 𝐶𝑜𝑜𝑙𝑖𝑛𝑔}  

Table 1 – Regimes segmentation and characterization 

R1 
Sundays on periods of exams/outside of school 

period 

R2 
Saturdays on periods of exams/outside of school 

period 

R3 Reduced activity (Two weeks in august) 

R4 Sundays during school period 

R5 Saturdays during school period 

R6 
Weekdays during periods of exams/outside of 

school period 

R7 Weekdays during school period 

R8 
Other periods of reduced activity (Mardi Gras, 

Easter break and last week of the year.) 

 

3.2 Prediction model 

The developed genetic algorithm will produce many 
different possible solutions, the members of population, 
which will reproduce, creating offspring that are better 
solutions to the optimization problem. This is done 
throughout many generations 

3.2.1 Members of population 

Each member of the population (nPop) will simulate the 
hourly loads for the 4 end-uses for an entire day. Each 
member resembles a matrix with 24 by 4 dimensions, 
where the columns represent each end-use consumption 
profile, and each line represents the hourly consumption. 

This way, by summing the 4 columns in the same line the 

total electricity consumption for that hour is obtained 

(equation 2), while by summing the 24 values in one 

column, the consumption in one day for one end-use is 

calculated (equation 3). 

    ∑ 𝑛𝑃𝑜𝑝ℎ,𝑒

4

𝑒=1

= 𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦ℎ ,   ℎ = {1,2, … ,24}       (2) 

    ∑ 𝑛𝑃𝑜𝑝ℎ,𝑒

24

ℎ=1

= 𝐷𝑎𝑖𝑙𝑦 𝐸𝑛𝑑 − 𝑢𝑠𝑒 𝐸𝑛𝑒𝑟𝑔𝑦𝑒,   𝑒 = {1,2,3,4}      (3) 

So, the model will optimize each end-use electricity 

consumption for each day and in the end will join the 

results. 

3.2.2 Boundaries 

It is important to guide the model to forecast the end-uses 
consumption as accurately as possible. To do so, it is 
necessary to implement information to reduce the errors 
and approximate the results to reality. This was done by 
adding bounds that limit the generated values and 
constraints, which will be discussed in the next section. 

These bounds are estimates of the maximum and minimum 
possible values for each end-use consumption at any given 
hour. So, when generating hourly values for each end-use, 
the algorithm will randomly choose a value in between the 
bounds implemented. This way, the bounds will assure that 
the initial error will be smaller, and therefore, so the final 
solution will have a lower error, and the results will be 
closer to reality. 

To estimate these bounds, the equipment data detailed in 
section 4.1 was used. The nominal power (�̅�𝑁) was obtained 
by dividing the total consumption (𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙) of each end-
use by the average working time of the equipment 
(𝑊𝑜𝑟𝑘 𝑇𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). 

  
∑ 𝐻𝑜𝑢𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡
= 𝑊𝑜𝑟𝑘 𝑇𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒  ℎ           (4) 

  
𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒

𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑊𝑜𝑟𝑘 𝑇𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒

= �̅�𝑁,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒 𝑘𝑊        (5) 

The same was done for the standby consumption, and so, 
the upper limit (max bound) was obtained. 

  𝑃𝑁,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑃𝑆𝑡𝑎𝑛𝑑𝑏𝑦,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒     (6) 

This was done for every end-use and regime. The minimum 

bounds are equal to the permanent consumption 

(𝑃𝑒𝑟𝑚𝐶𝑜𝑛𝑠𝑢𝑚𝑝). 

      𝑀𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒 = 𝑃𝑒𝑟𝑚𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒 ,                (7) 

, 𝑅 = {1,2, … ,8},   𝐸𝑛𝑑 − 𝑢𝑠𝑒 = {𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔, 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠, 𝐻𝑉𝐴𝐶, 𝑂𝑡ℎ𝑒𝑟𝑠} 



As HVAC data was available for the Civil building, a second 

method of determining HVAC bounds was used. The hourly 

HVAC profile was separated into the different regimes 

created, as well as separated by day and night, and heating 

and cooling season. The weekdays regimes (R6 and R7) 

were further divided into two groups. HVAC systems exist 

mainly to achieve thermal comfort of occupants, so this 

consumption should increase when temperatures are 

harsher, when compared to more moderate days. This 

way, by separating each week regime (R6 and R7) into two 

new regimes can introduce this extra information 

regarding temperature. 

The average daily temperature (𝑀𝑒𝑎𝑛𝑇) was determined 

for each regime and season. Then, each day was separated 

according to that temperature. If the average temperature 

(𝐷𝑎𝑖𝑙𝑦𝑀𝑒𝑎𝑛𝑇) of a day was higher than the average of the 

regime, then that day was selected to one of the new 

regimes, if it was lower, then it went to the other one. This 

way, the days with harsher temperatures would be in one 

regime, and the more moderate days would be in another. 

              𝐷𝑎𝑖𝑙𝑦𝑀𝑒𝑎𝑛𝑇𝑑,𝑅,𝑆𝑒𝑎𝑠𝑜𝑛=

∑ 𝑇𝑑,𝑅,𝑆𝑒𝑎𝑠𝑜𝑛

12 ℎ𝑜𝑢𝑟𝑠
                        (8) 

          𝑀𝑒𝑎𝑛𝑇𝑅,𝑆𝑒𝑎𝑠𝑜𝑛 =
∑ 𝐷𝑎𝑖𝑙𝑦𝑀𝑒𝑎𝑛𝑇𝑑,𝑅,𝑆𝑒𝑎𝑠𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑦𝑠𝑅,𝑆𝑒𝑎𝑠𝑜𝑛

,             (9) 

𝑅 = {6,7},     𝑆𝑒𝑎𝑠𝑜𝑛 = {𝐻𝑒𝑎𝑡𝑖𝑛𝑔, 𝐶𝑜𝑜𝑙𝑖𝑛𝑔},     

, 𝑑 = {1,2, … , 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑦𝑠} 

For each one of these groups, the average of the maximum 
and minimum hourly loads for each day were calculated. 

  𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑅,𝐻𝑉𝐴𝐶,𝑆𝑒𝑎𝑠𝑜𝑛 =
∑ 𝑚𝑎𝑥 (𝐻𝑉𝐴𝐶𝑅,𝑑,ℎ,𝑆𝑒𝑎𝑠𝑜𝑛)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑦𝑠𝑅,𝑆𝑒𝑎𝑠𝑜𝑛

,      (10) 

  𝑀𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑅,𝐻𝑉𝐴𝐶,𝑆𝑒𝑎𝑠𝑜𝑛 =
∑ 𝑚𝑖𝑛 (𝐻𝑉𝐴𝐶𝑅,𝑑,ℎ,𝑆𝑒𝑎𝑠𝑜𝑛)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑦𝑠𝑅,𝑆𝑒𝑎𝑠𝑜𝑛

,        (11) 

, ℎ = {8,9, … ,19},   𝑅 = {1,2, … ,8},   

, 𝑑 = {1,2, … , 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑦𝑠},   𝑆𝑒𝑎𝑠𝑜𝑛 = {𝐻𝑒𝑎𝑡𝑖𝑛𝑔, 𝐶𝑜𝑜𝑙𝑖𝑛𝑔} 

This way, the model can be tested with two different sets 
of bounds to compare the performance of the two. 

3.2.3 Constraints 

To implement further information into the model, 
constraints were used. 

Different constraints were used in order to add different 
details and information regarding the 4 end-uses. These 
constraints were implemented in the form of inequalities, 
as explained as follows. 

3.2.3.1 Constraints regarding activity patterns 

The ratio between the minimum and maximum 
consumption of HVAC was calculated for both day and 
night and for each regime (𝐻𝑉𝐴𝐶𝑅𝑎𝑡𝑖𝑜𝑅𝑒𝑎𝑙). The boundaries 
obtained from the HVAC profile were used for this process. 
For each regime, the minimum boundary during the day 
was divided by the maximum during that day to obtain the 
𝑚𝑖𝑛/𝑚𝑎𝑥 ratio (Equation 12). This was also done for the 
night-time and for both seasons. 

    
𝑀𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑅,𝐷𝑎𝑦𝑡𝑖𝑚𝑒,𝑆𝑒𝑎𝑠𝑜𝑛

𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑅,𝐷𝑎𝑦𝑡𝑖𝑚𝑒,𝑆𝑒𝑎𝑠𝑜𝑛

= 𝐻𝑉𝐴𝐶𝑅𝑎𝑡𝑖𝑜𝑅,𝐷𝑎𝑦𝑡𝑖𝑚𝑒,𝑆𝑒𝑎𝑠𝑜𝑛 ,     (12) 

In the simulation, the model imposes that the ratio of the 
generated values must be equal or higher than the 
previously calculated ones, as shown in equation 13. 

        (
𝐻𝑉𝐴𝐶𝑚𝑖𝑛

𝐻𝑉𝐴𝐶𝑚𝑎𝑥

)
𝑆𝑖𝑚𝑅,𝑇𝑖𝑚𝑒,𝑆𝑒𝑎𝑠𝑜𝑛

≥ 𝐻𝑉𝐴𝐶𝑅𝑎𝑡𝑖𝑜𝑅𝑒𝑎𝑙𝑅,𝑇𝑖𝑚𝑒,𝑆𝑒𝑎𝑠𝑜𝑛
,        (13) 

, 𝑅 = {1,2, … ,8}, 𝑇𝑖𝑚𝑒 = {𝐷𝑎𝑦, 𝑁𝑖𝑔ℎ𝑡},  

, 𝑆𝑒𝑎𝑠𝑜𝑛 = {𝐶𝑜𝑜𝑙𝑖𝑛𝑔, 𝐻𝑒𝑎𝑡𝑖𝑛𝑔}              

Despite not knowing how the consumption changes from 

hour to hour, it is known that the consumption (𝑇𝑜𝑡𝑎𝑙𝐸) 

during the day is higher than during the night. So, the first 

hour of the daytime must consume more electricity than 

the last hour of the night, and the same applies for the last 

hour of the daytime and the first hour of the night. Thus, 

the model checks if this is complied. 

                     𝑇𝑜𝑡𝑎𝑙𝐸𝑆𝑖𝑚(08: 00) > 𝑇𝑜𝑡𝑎𝑙𝐸𝑆𝑖𝑚(07: 00)                     (14) 

                     𝑇𝑜𝑡𝑎𝑙𝐸𝑆𝑖𝑚(19: 00) > 𝑇𝑜𝑡𝑎𝑙𝐸𝑆𝑖𝑚(20: 00)                     (15) 

Finally, to assure the end-use shares will be close to reality, 

some data regarding end-use shares should be 

implemented. Since the algorithm runs each day at a time, 

it is impossible to check if the end-use shares of the entire 

year are correct. So, to add this information to the model, 

the end-use shares will be evaluated only for the weekdays, 

since they are the more numerous days and they are the 

biggest representatives of the final end-use shares. 

To allow for some variation, instead of checking if the 

simulated end-use shares (𝐸𝑈𝑆ℎ𝑎𝑟𝑒) are the same as the 

real ones obtained from the equipment data, the model 

will check if the simulated shares are in a range of values 

close to the real ones. 

             𝐸𝑈𝑆ℎ𝑎𝑟𝑒𝑆𝑖𝑚 ∈ [𝐸𝑈𝑆ℎ𝑎𝑟𝑒𝑅𝑒𝑎𝑙 − 𝛿; 𝐸𝑈𝑆𝑅𝑒𝑎𝑙 + 𝛿],         (16)                                      

3.2.3.2 Inter end-use constraints 

Although during the night the occupancy is usually zero, 

and the consumption is low, there are situations where this 

not the case. When this happens, it is expected that the 

lights will be turned on and more electronic equipment or 

HVAC will be used. So, when one end-use is consuming 

more energy, the others should to. Thus, this relation 

between usage of end-uses was also implemented in the 



model. When the generated loads for lighting are above a 

certain value (150% of the lower bound of the 

corresponding end-use), the model checks if the 

consumption for electronics and HVAC are also above a 

certain value. This separates the periods of time when 

consumption is only due to standby, when occupancy is 

zero, and periods when there are occupants in the building, 

so equipment is being used. This will assure that when 

lights are turned on, other equipment will also be turned 

on. 

       𝐿𝑖𝑔ℎ𝑡𝑁
̅̅ ̅̅ ̅̅ ̅̅ ̅ > 1.5 ∗ 𝐿𝑖𝑔ℎ𝑡𝑁𝑀𝑖𝑛

 ∧ 𝐸𝑙𝑒𝑡𝑟𝑁
̅̅ ̅̅ ̅̅ ̅̅ ̅ > 1.5 ∗ 𝐸𝑙𝑒𝑡𝑟𝑁𝑀𝑖𝑛

 ∧ 

                                  ∧  𝐻𝑉𝐴𝐶𝑁
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > 1.5 ∗ 𝐻𝑉𝐴𝐶𝑁𝑀𝑖𝑛

 ,                    (17)          

, 𝑁 = 𝑁𝑖𝑔ℎ𝑡, 𝑀𝑖𝑛 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚    

3.2.3.3 Constraints regarding HVAC consumption and 
temperature 

Finally, constraints that relate HVAC consumption with the 

ambient temperature were also added. The correlations 

obtained in section 3.1 were used for this purpose. 

The results show more correlation between HVAC 

consumption and temperature during regimes of normal 

activity (R6 and R7), in comparison to other regimes. It also 

shows that on those two regimes the HVAC consumption 

increases with temperature in the cooling season but 

decreases during the heating season. 

The algorithm checks if the correlation between the 

generated HVAC loads during the day and the average 

temperature (TAverage) for that day are higher than a base 

value during regimes of activity (𝐵𝑎𝑠𝑒𝐶𝑜𝑟𝑟). For the other 

regimes, it checks if the correlation is lower than the base 

value for these regimes. The algorithm also checks if the 

correlation is negative during heating season and positive 

during cooling season, for the regimes of activity. The value 

of 𝐵𝑎𝑠𝑒𝐶𝑜𝑟𝑟 was determined by analysing the results and 

it will be explained in section 4.1. 

    |𝐶𝑜𝑟𝑟(𝐻𝑉𝐴𝐶, 𝑇𝐴𝑣𝑒𝑟𝑎𝑔𝑒)𝑆𝑖𝑚,𝐷| > 𝐵𝑎𝑠𝑒𝐶𝑜𝑟𝑟𝑅, 𝑅 = 6,7           (18)  

|𝐶𝑜𝑟𝑟(𝐻𝑉𝐴𝐶, 𝑇𝐴𝑣𝑒𝑟𝑎𝑔𝑒)𝑆𝑖𝑚,𝐷| < 𝐵𝑎𝑠𝑒𝐶𝑜𝑟𝑟𝑅, 𝑅 = 1,2,3,4,5,8   (19) 

𝐶𝑜𝑟𝑟(𝐻𝑉𝐴𝐶, 𝑇𝐴𝑣𝑒𝑟𝑎𝑔𝑒)𝑆𝑖𝑚,𝐷 > 0, 𝑅 = 6,7, 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑆𝑒𝑎𝑠𝑜𝑛     (20)  

𝐶𝑜𝑟𝑟(𝐻𝑉𝐴𝐶, 𝑇𝐴𝑣𝑒𝑟𝑎𝑔𝑒)𝑆𝑖𝑚,𝐷 < 0  𝑅 = 6,7, 𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑆𝑒𝑎𝑠𝑜𝑛    (21) 

𝐷 = 𝐷𝑎𝑦 

3.2.4 Reproduction and survival of the best 

To determine the best members (nPop) for each iteration, 

first it was necessary to define what parameters of 

evaluation should be used. Two parameters were used, the 

error (CCost) and the count of constraints not complied 

(CCount). The error is the mean absolute error for the 

entire day, comparing the total simulated consumption 

(𝑆𝑖𝑚𝐻𝑜𝑢𝑟𝑙𝑦𝐸ℎ) for each hour (summing the end-uses) with 

the real value for that hour (𝑅𝑒𝑎𝑙𝐻𝑜𝑢𝑟𝑙𝑦𝐸), for the 

corresponding building. 

      |𝑆𝑖𝑚𝐻𝑜𝑢𝑟𝑙𝑦𝐸ℎ − 𝑅𝑒𝑎𝑙𝐻𝑜𝑢𝑟𝑙𝑦𝐸ℎ| = 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑟𝑟𝑜𝑟ℎ ,        (22)  

                              𝐶𝐶𝑜𝑠𝑡 =
∑ 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑟𝑟𝑜𝑟ℎ

24
                               (23) 

, ℎ = {1,2, … ,24} 

The other parameter used is the CCount. This parameter 

counts the number of constraints mentioned in the 

previous section, that the member of population does not 

comply with. If the model only sorted the members by the 

error, this could lead to situations where the error could be 

close to 0, however the model would fail to deliver end-use 

load disaggregation that would make sense. As such, 

complying with constraints is the priority of the model, 

followed by achieving the minimum error. 

3.2.4.1 Selection 

The selection method used to choose the parents that 

would be used for the crossover was the roulette wheel 

selection. This method gives different probabilities 

depending on the fitness of each member of the 

population. The fitter the member is, the higher the chance 

of being chosen as a parent. For this selection the fitness 

parameter used was the CCost. This way, the lower the 

CCost of a member, the more likely it is for that member to 

become a parent. 

3.2.4.2 Crossover and Mutation 

The uniform crossover was used in this algorithm. This 

method creates offspring by randomly choosing each gene 

from one of the parents. The number of offspring will be 

the same as the number of original members. Mutation 

changes some genes from some of the newly created 

members, by replacing those genes with a different value. 

This value is obtained from a normal distribution with a 2% 

probability. 

3.2.4.3 Sorting and survival of the best 

After reproduction parents and children are joined in the 

same population, so the best ones survive to the following 

generation. The members with lowest CCount are the best 

and are sorted by lowest CCost. Then the members with 

the second lowest CCount are the next group of members 

to be sorted by CCost. This proceeds until the original size 

of population is reached, and the worst members are 

eliminated. 

The process of reproduction and sorting reoccurs every 

generation until one stopping criteria is reached, the 

maximum number of iterations is reached, or the mean 

relative error (MRE) of the best member of the population 

is lower than 5%. ASHRAE guideline 14 [18] states the limits 

of two relative errors, NMBE and CVRMSE, are 10% and 



30% respectively, for hourly predictions. So, an MRE of 5% 

was assumed to be an acceptable error. 

𝑀𝑅𝐸ℎ =
∑

|𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦ℎ − 𝑅𝑒𝑎𝑙 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦ℎ|
𝑅𝑒𝑎𝑙 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦ℎ

24
(24) 

ℎ = {1,2, … ,24} 

4. Case Study Description 

For this work, the Alameda campus of IST, in Lisbon was 
used, due to accessibility of data. 

The total yearly consumption in 2019 for every room of 
every building on campus was available, separated by end-
uses, namely Lighting, Electronics, HVAC and Others 
(pumps, elevators, lab equipment). This data was obtained 
by an audit provided by “Campus Sustentável” project [19]. 

The electricity hourly loads for 2019 were available for five 
buildings (Central, Civil, Mathematics, North Tower, South 
Tower) and were obtained by smart meters. These loads 
were processed in order to remove errors. Missing data 
was replaced by the average of the nearest hours when 
available, and missing data that lasted a few days were 
replaced by the correspondent hourly values from the 
week before or after. 

Weather data, obtained from renewablesninja [20], 
specifically hourly profile of outside temperature in Lisbon 
was used. 

 

4.1 Civil Building 

The Civil building was used to develop the model since 
there was more available data for this building. 

Equipment data was available for this building. An audit 
made by “Campus Sustentável” [21] registered all 
equipment in the building and their nominal power, total 
consumption, standby consumption and number of 
working hours. The consumption and hours were divided 
into 5 different regimes: AR1-Weekdays, AR2-Holidays, 
AR3-Saturdays, AR4-Sundays and AR5-2 weeks of vacations 
in August. These regimes were matched with the regimes 
mentioned in section 3, as show in Table 2. The permanent 
consumption was also available, that is, the minimum 
electricity consumption at any given hour, for each end-use 
and regime. 

 

Table 2 – Regimes grouping 

HVAC profile 

regimes 
R1, R4 R2, R5 R6, R7 R3 R8 

Audit regimes AR4 AR3 AR1 AR5 AR2 

 

Real hourly HVAC profiles for 2017 and 2018 were also 

available, as well as hourly modelled profiles for total, 

lighting, electronics and HVAC consumption simulated in 

Energy Plus Software [22]. The profiles from 2017 were 

used and adjusted to 2019, so that weekdays in one year 

did not coincide with weekends in the other year. 

Table 3 – Correlations between HVAC consumption and outside 
temperature per regime 

 

Table 3 shows the correlations between HVAC 

consumption and temperature. It is observed that the 

correlations are, usually, higher, in absolute value, during 

the regimes of activity (R6 and R7) (20-50%) than during 

weekends and other regimes of reduced activity, apart 

from R8 (0-30%). This is due to the low occupancy in the 

latter regimes. Since the occupancy is low, the need to 

achieve thermal comfort is very reduced, so the HVAC 

consumption becomes independent of the temperature. 

There is also a positive relation between HVAC 

consumption and temperature during cooling season, and 

a negative one in heating season. During cooling season, 

when temperatures increase, HVAC consumption also 

increases. On the other hand, in heating season, HVAC 

demand increases the lower the temperature is. This 

relation is evident during the week (R6 and R7) but not so 

much on other regimes. 

With this in mind, the 𝐵𝑎𝑠𝑒𝐶𝑜𝑟𝑟 for R6 and R7 is 20%, while 

for all other regimes it is 30%. Since R8 only includes a few 

days of data, the correlations obtained were very different 

from all other regimes of lower activity. They were 

considered outliers, and the 𝐵𝑎𝑠𝑒𝐶𝑜𝑟𝑟 for R8 is equal to 

the regimes of reduced activity. 

4.2 South Tower 

After developing and validating the model for Civil, the 
model was tested for another building, the South Tower. 
Since equipment data was not available for this building, 
the bounds were estimated differently.  

By extrapolating the average working time of equipment 
and the regime share of each end-use to the data from the 
2019 audit the bounds were calculated. The regime share 
is the percentage of total consumption attributed to each 
regime (equation 25). By multiplying the total yearly 
consumption (𝑇𝑜𝑡𝑎𝑙𝐸) from the 2019 consumption audit 
with the regime share (𝑅𝑆ℎ𝑎𝑟𝑒), equations 4 and 5 could 
be used to obtain the max bounds. 

              
𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒,𝐶𝑖𝑣𝑖𝑙      

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙,𝐸𝑛𝑑−𝑢𝑠𝑒,𝐶𝑖𝑣𝑖𝑙      
= 𝑅𝑆ℎ𝑎𝑟𝑒𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒          (25) 

𝑅𝑆ℎ𝑎𝑟𝑒𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒 ∗ 𝑇𝑜𝑡𝑎𝑙𝐸𝐸𝑛𝑑−𝑢𝑠𝑒,𝑆𝑜𝑢𝑡ℎ 𝑇𝑜𝑤𝑒𝑟 = 

          = 𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒,𝑆𝑜𝑢𝑡ℎ 𝑇𝑜𝑤𝑒𝑟  𝑘𝑊ℎ/𝑦𝑒𝑎𝑟           (26) 

 R1 R2 R3 R4 

Heating -0.0127 -0.1604 - -0.1109 

Cooling -0.3137 0.0485 -0.1699 0.4049 

 R5 R6 R7 R8 

Heating -0.1973 -0.5176 -0.2691 0.8779 

Cooling 0.1045 0.2268 0.4656 0.2469 



Figure 1 – Comparison of daily HVAC RMSE in the month of March (31 
days): Simulation 1 (blue) vs Simulation 2 (orange) 

, 𝑅 = {1,2, … ,8},   𝐸𝑛𝑑 − 𝑢𝑠𝑒 = {𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔, 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠, 𝐻𝑉𝐴𝐶, 𝑂𝑡ℎ𝑒𝑟𝑠} 

4.3 Comparison between buildings 

To analyse the relation between end-use consumption and 
type of space it was first needed to know which 
rooms/spaces were the largest consumers. By looking at 
the total consumption data, the biggest consumers were 
technical rooms, research labs, hallways, offices, 
classrooms and study spaces. In Civil, these spaces were 
responsible for 92% of the total consumption in the 
building. In the South Tower they were responsible for 98% 
of the consumption. Technical rooms were by far the major 
consumers, 49% in Civil and 61% in the South Tower. 

After that, it was important to understand how each 
room/space consumes energy, by finding the yearly end-
use shares for each one. Table 4 presents the end-use 
shares ranges for Civil and South Tower. 

 

Table 4 – Range of end-use shares per type of space 

 Lighting (%) 
Electronics 

(%) 
HVAC (%) 

Others 

(%) 

Classrooms 56.19-81.14 4.78-21.18 14.08-22.63 0 

Study 

Spaces 
34.87-43.14 55.7-58.94 1.16-6.2 0 

Technical 

Rooms 
0.07 0.02-0.31 81.3-96.64 2.98-18.6 

Offices 21.62-26.04 44.71-65.01 8.98-33.68 0 

Research 

Labs 
40.7-73.37 14.96-23.11 3.51-23.99 0-20.36 

Hallways 70.42-94.08 1.89-3.35 2.58-22.29 0-5.41 

 

5. Results and discussion 

5.1 Validation 

To validate the model, two simulations were performed for 
the Civil building. Simulation 1 used bounds obtained from 
the HVAC profile. Simulation 2 used bounds derived from 
the equipment data. The input parameters for simulation 1 
were 4000 members of population and 150 iterations. To 
save time, and because the error stabilized before 140 
iterations, the input parameters for simulation 2 were 
reduced to 3750 members and 140 iterations. 

As expected, using the HVAC profile led to better results, as 
seen in Table 5. Despite this, both simulations show 
satisfiable performance. 

 

Table 5 – Error comparison between simulation 1 and 2 

 RMSE MRE 

Simulation 1 24.55 9.77% 

Simulation 2 30.91 12.57% 

 
Looking at the HVAC forecast of a typical month (Figure 1), 
there is a noticeable increase of error in the second 
simulation. This explains the higher error for the total 
consumption since the other bounds did not change. The 
HVAC profile allowed to obtain better estimates for the 

bounds. The hourly values were available, so the bounds 
obtained are closer to reality than estimates obtained by 
information from the equipment data audit. 

The prediction errors are smaller during weekends. This is 
due to the smaller real consumption leading to lower 
errors.  
 
 

 

 

 

 

 

 

 

 
 

Table 6 compares the simulated end-use shares of both 
simulations with the shares calculated from the energy 
consumption data. The simulated shares are close to the 
calculated values, showing the good performance of the 
model for both simulations. 

Table 6 – End-use shares comparison – Civil building 

End-Use 

Shares 
Lighting Eletronics HVAC Others 

Audit data 25% 18% 48% 9% 

Simulation 1 28.9% 24.2% 34.1% 12.9% 

Simulation 2 26.1% 23.5% 37.9% 12.4% 

 
The end-uses profiles of simulation 2 were compared with 
profiles simulated in Energy Plus Software. The developed 
model showed more variability throughout the day, week 
and seasons, demonstrating that it disaggregates the 
electricity consumption into the different end-uses in a 
more realistic manner that represents the patterns of 
consumption and how it changes throughout time. 
Therefore, this indicates that the model provides more 
insightful results than energy consumption forecasting 
programs such as Energy Plus. Figure 2 shows both 
simulated lighting profiles during a week in March. 

 

 

 

 

 
 

 

 

 
Figure 2 – Normalized lighting consumption comparison in a typical 
week: Energy Plus (blue) vs Simulation 2 (orange) 
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5.2 Implementation in South Tower 

After validation, the model was implemented in another 
building, the South Tower, to test the model performance 
in accurately forecasting end-uses demand.  Simulation 3 
was performed with the same input parameters as 
simulation 2, but for South Tower building. 

The results show a few days with very high errors. 
However, these days occur during the vacation period in 
August (R3) and the last week of the year. Due to the lack 
of data, bounds had to be estimated assuming the patterns 
of consumption between buildings did not change, but this 
was not the case. The measured loads were considerably 
higher than expected in August and very low in the last 
week of December. This led to high errors since the 
bound’s estimates were significantly different than they 
would have been with more available data.  

Table 7 shows the error improvement after removing those 
two regimes from the results. This demonstrates how 
important it is to have data to obtain good estimates, as 
both simulations for Civil had more available data than the 
South Tower. 

Table 7 – Error comparison of simulation 3 

 RMSE MRE 

Before correction 34.79 22.36% 

After correction 32.96 17.85% 

 

 Just as in Civil, the model predicted the end-use shares for 
the South Tower with good results (Table 8). So, despite the 
higher error, these results show the potential of 
implementing this model to different buildings, as long as 
data regarding end-use consumption is available. 

Table 8 – End-use shares comparison – South Tower 

End-Use 

Shares 
Lighting Eletronics HVAC Others 

Audit data 17% 9% 67% 7% 

Simulation 

3 
23.3% 15.4% 53.7% 7.6% 

 

5.3 Discussion 

5.3.1 Comparison of indicators between buildings 

 

 

 

 

 

 

 

 

 

Analysing Figure 3, it can be seen that the consumption per 

unit of gross floor area in the South tower is higher than in 

the building of Civil for all end-uses. This could be explained 

by different reasons, such as building characteristics, 

occupancy or inefficient equipment or processes. 

However, without further information regarding 

architecture, occupancy, equipment efficiency or the 

existence of any retrofitting measures taken in either 

buildings, one might try to take conclusions looking at the 

types of spaces in each building, and how much they 

represent (in area and electricity demand) for each 

building. 

To better understand the relation between area allocation 

for each type of space and the Building Energy Intensity 

(BEI), the ratios between the South Tower BEIs and the Civil 

BEIs were calculated, to see how much of an increase each 

end-use has from one building to the other. The ratios for 

the area allocation were also calculated to better compare 

their variations. Table 9 and 10 present these ratios. 

Table 9 – Ratio of South Tower BEI over Civil BEI 

 

Table 10 – Ratio of area allocation between South Tower and Civil 

Type of Space South Tower/Civil Area 
Allocation 

Classrooms 0.68 

Study Space 1.76 

Technical Room 1.53 

Offices 0.66 

Research Labs 2.20 

Hallways 0.99 

 

There seems to be a relation between consumption and 
area allocation for each type of room. 

Looking at the technical rooms, there is a larger allocation 
of area to these spaces in the South tower relative to the 
building of Civil around 50% more. These spaces are the 
biggest consumers, especially regarding HVAC. This 
increase in area allocation should lead to a significant 
increase in total and HVAC consumption. This does occur 
as the HVAC ratio is the highest. 

The South Tower allocates much more area to research 
labs than Civil, more than double. These spaces consume 
large amounts of electricity in lighting (40-70% of total 
consumption). Therefore, the BEI should increase for 
lighting, as it does since after HVAC, the biggest end-use 
consumption increase was lighting. 

Despite the bigger allocation to labs, the “Others” end-use 
did not increase significantly due to the low consumption 
of this end-use in labs. Electronics consumption does not 
vary significantly, which can be explained by the area 

End-use 
Total 

consumption 
Lighting Electronics HVAC Others 

𝑺𝒐𝒖𝒕𝒉 𝑻𝒐𝒘𝒆𝒓 𝑬𝑩𝑰

𝑪𝒊𝒗𝒊𝒍 𝑬𝑩𝑰
 

 

2.02 1.80 1.33 2.86 1.24 



allocation of offices and study spaces. Offices and study 
spaces are the biggest consumers of this end-use. While 
Civil has a bigger area share of offices, the South Tower has 
a bigger share of study spaces, so they balance out.  

5.3.2 Comparison of indicators with other studies 

Comparing the total BEIs from this work with different 
indicators for various educational buildings around the 
world [10], the range obtained (64.9-131.7) is closer to the 
values obtained for other school buildings in southern 
Europe compared to other regions (Table 11). Since the 
countries in Southern Europe have warmer climates, the 
energy demands, specifically HVAC, are lower than for 
other regions in the world, so this can explain this 
difference in values for BEIs. 

 

Table 11 – BEIs for educational buildings in different countries 

Southern 

Europe 
BEI (kWh/m2) Other regions BEI (kWh/m2) 

Cyprus (High 

Schools) [10] 
62.75–116.22 Slovenia [10] 192 

Greece [10] 92 

Taiwan 

(University) 

[10] 

79 

Portugal (This 

work) 
64.9-131.7 

Espoo, Finland 

(University) 

[10] 

89-450 

Manhattan 
[17] 

142 

 

By comparing the BEIs for IST with the BEIs obtained in [23] 

it is noticeable the large increase in HVAC consumption in 

the offices (160.48 kWh/m2), which is mainly due to the 

subtropical climate of Hong Kong, and the constant activity 

during the summer, unlike in IST, where occupancy reduces 

in the summer during vacations. The other end-uses are 

similar to the ranges obtained, electronics (28.32 kWh/m2) 

and others (14.16 kWh/m2) have higher consumptions, 

mainly due to more computers and more frequent use of 

elevators. 

6. Conclusions 

In this work, a modified genetic algorithm was developed, 
to forecast the end-uses consumption of a building. By 
using IST campus’ buildings as case study, the model was 
validated for the Civil building, for which there was detailed 
data to train the model, using two approaches: one using 
hourly HVAC loads to tune the model, and other using only 
equipment characteristics and use data. After validated 
and finetuned, the model was applied to the South Tower 
building, to observe the accuracy of the model on other 
buildings. By using outside temperature data and 
equipment data to estimate the boundaries, the model 
achieves satisfiable results.  

The simulation with the data obtained from the HVAC 
profile resulted in the lower model error, 9.77%, while, 
without using the HVAC profile, the model predicted the 
energy demand with an accuracy of 12.57%. The model 

performed better with the additional information, that 
allowed for a better and more detailed estimation of 
boundaries. The results also show that the simulated end-
use shares are similar to the real ones, so again, the model 
disaggregates the total electricity demand into the 
different end-uses at a satisfiable performance. 

For the South Tower, the model did not perform as well 
with a relative error of 22.36%. However, the bounds were 
obtained by a rough estimate with some simplifying 
assumptions due to the lack of data. This shows the 
potential for better performances of the model for 
different buildings, when having access to data that allows 
better boundaries estimates. With this in mind, the model 
developed can be useful in situations where more complex 
data is not available, since it only requires total hourly 
consumption profiles and ambient temperature data, as 
long as good boundaries and constraints can be estimated. 

With the results from the simulations, end-use 
consumption electricity demand indexes for each building 
were determined. It was concluded that analysing the area 
allocations for each type of space, can help understand the 
total and end-uses consumptions for that building. 

Future Work 

For this work most data used is usually accessible to 

universities, to develop a model that can be replicated for 

different studies without the need to have more complex 

data. However, this limits the performance of the model 

since simpler data does not provide enough information to 

forecast energy demand with very low errors. 

Furthermore, it was only possible to validate the model for 

one building, as data regarding end-use profiles was not 

available for other buildings. And, while this data was 

available for Civil, it was not real data measured by smart 

meters or by an audit, it was obtained through a rough 

simulation from Energy Plus Software. 

This way, future work should be done to improve the 

model developed in this study. The model should be 

validated with real data, if available, for the building of 

Civil. If not possible, it should be tested for another building 

where more data regarding end-use profiles is accessible. 

Also, to better understand the viability of using the area 

allocations to analyse the consumption of each building, 

simulations for other buildings with more different space 

types should be done, specifically buildings with data 

centres, since they are significant consumers, with a 

somewhat constant consumption during the day and night. 

This way, a database of end-uses BEIs for university 

buildings with diverse activities can be created, which can 

serve as reference for other studies regarding energy 

consumption in higher education buildings. 

Simulations for non-university buildings could also be done 

to see if the model developed can also perform well for 

different buildings with other types of activities. 
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